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I A SURPRISING PROPERTY OF SOME REGULAR POLYTOPESI

by Carolyn Licata and David L. Powers

Department of Mathematics and Computer Science

Clarkson University

Potsdam NY 13676

Abstract

-'The Platonic solids and some other polytopes have the prope-ty
that the adjacency information contained in the skeleton (graph) is
enough to determine the polytope completely. In particular, the
eigenmatrix of the adjacency matrix corresponding to the second
eigenvalue provides the coordinates of the vertices.

This work was supported by the Office of Naval Research through grant
NOOO14-85-K-0497

I-o ..

- 87 6 25 055

q * *.%"V V W V'% W* 'tV * -* *W.... ,, ..,"'.L.'.". .,'. '. . ''''''...,....".",,.



1. INTRODUCTION

Let P be an m-dimensional convex polytope with n vertices.

The skeleton of P is the graph G whose vertices and edges are the

vertices and edges of P. Since the skeleton retains none of the

metric information about P, many polytopes have isomorphic skeletons.

For instance, the skeletons of all three-dimensional parallelepipeds

are isomorphic to that of the cube.

Godsil (1978) suggested the following way in which a graph G

could produce some polytopes. Let G be a graph on n vertices and A be

its adjacency matrix. Suppose that a is an eigenvalue of G (that is,

an eigenvalue of A) with multiplicity m; then one can construct an n x

m eigenmatrix Z of orthonormal eigenvectors of A AZ = a Z, ZZ -

I. (The prime ' indicates transposition.) Thp distinct rows of Z may

be interpreted as coordinate matrices of points in m-dimensional

euclidean space (or as the points themselves). The convex hull of

these points, denoted by C(a ), is the polytope associated with

eigenvalue a. For instance, the largest eigenvalue of a connected

graph is necessarily simple, so the associated polytope is generally

an interval. However, if all vertices of G have the same valency k,

then the largest eigenvalue equals k, the column of l's (denoted by e)

is a corresponding eigenvector, and the polytope C(k) degenerates to a

single point. Except in this case, the polytope C( a ) has dimension

equal to the multiplicity of a. Since Z multiplied on the right by

any orthogonal matrix still has the properties noted, C(a ) is

determined up to rotation and reflection.

When the graph G to which the above process is applied is the

skeleton of a convex polytope P, the C( a ) may be related to P in some

way. If P is isomorphic to a polytope C(a ) associated with an



eigenvalue of its skeleton, we say that P is self-reproducing. In

other words, the adjacency information about the polytope is

sufficient to determine the polytope, up to isomorphism. (Polytope

isomorphism includes, but is not limited to, nonsingular affine

transformations. See Brondsted, 1983.)

The polygons provide a family of simple examples. The

skeleton of an n-gon is an n-cycle. With appropriate numbering, its

adjacency matrix has I's next to the main diagonal and in the upper

right and lower left corners and O's elsewhere. The eigenvalues are

given by the formula (see Cvetkovic, Doob and Sachs, 1980, p. 306, or

Schwenk and Wilson, 1978, p. 318)

a = 2 cos((k-1)8), e = 2ir /n, k = 1, 2,..., [n/2]+1.

All have multiplicity 2 except the first and, when n is even, the

last. The orthonormal eigenmatrix Z corresponding to the second

eigenvalue has elements

zji = /2/n cos(je), z = -'T sin(je), j = 1,..., n.

It is obvious that the rows of Z are precisely the coordinates of the

vertices of an n-gon centered at the origin. Thus we see that the

n-gons (n > 2) are self-reproducing.

The objective of this paper is to show that the Platonic

solids and some related polytopes are all self-reproducing. We will

employ two methods of proof. One is to show that the matrix K, whose

rows are the coordinates of the vertices of a polytope P, satisfies

the eigenmatrix condition. )he second is to show that the rows of an

orthogonal eigenmatrix are coordinates of the vertices of (an

isomorphic image of) the polytope P. In the case of the polygons, we

have used the second method. We formalize the methods by stating two

lemmas.
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Lemma 1. Let K be the matrix of coordinates of the vertices of a

convex polytope P, and let A be the adjacency matrix of it- skeleton.

If AK = cLK and the multiplicity of a in the spect-um of A equals the

dimension of P, then P is self-reproducing.

Proof. First note that the rank of K must equal the dimension of P.

so the columns of K are independent. Then there is a nonsingular

matrix T such that Z = KT is an orthogonal eigenmatrix. The convex

hull of the rows of Z is thus isomorphic to P, the convex hull of the

rows of K.

Lemma 2. Let A be the adjacency matrix of the skeleton of a convex

polytope P, and let Z be an orthogonal eigenmatrix corresponding to an

eigenvalue a . If the rows of Z are coordinate matrices of the

vertices of a polytope isomorphic to P, then P is self-reproducing.
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2. THE MAIN THEOREMS

In this section we prove the main results of thp paper

concerning the Platonic solids and some other regular polytopes.

Theorem 1. The Platonic solids are self-reproducing.

Proof. The tetrahedron, octahedron and cube are members of thp three

families of regular polytopes treated in Theorem 2. For the two

remaining Platonic solids, we rely on Lemma l and the coordinates of

central polyhedra reported by Coxeter (1973, pp. 52-53).

The icosahedron has twelve vertices whose coordinates are (0,

± T, ±1 ), (±1, , ±t), (±T, ±1, 0) where t = (I + V5 )/2. Each vprtex

is adjacent to the five nearest vertices. Thus, row i of the equation

AK = a K, which we are testing, says that the sum of the coordinate

matrices of the five neighbors of vertex i is a multiple of the

coordinate matrix of vertex i. One can easily verify, for instance,

that the five neighbors of (T , 1, 0) are (1, 0, ±T), (0, , ±1) and

(T, -1, 0), with sum v'(T, 1, 0). Next, note that the multiplicity of

a2 = v3 in the spectrum of A is 3. (See Cvetkovic, Doob and Sachs,

1980, p. 310.)

The vertices of the dodecahedron are (0, ±T -1 ± t) (T , 0 ,

± _( , T ± , 0) and (±l,± 1,± 1), and each vertex is adjacent to

the three nearest vertices. One may verify that the neighbors of (1,

1,1) are (T, 0, T - ), (0, t " I  T ) and (T- , T, 0), which sum to (t +
-1 -l

T )(1, 1, 1). The eigenvalue a2 = r + T = /T has multiplicity 3 in

the spectrum of A (Cvetkovic, Doob and Sachs, 1980, p. 308).

The proofs are completed by observing that a vertex of either

polyhedron may be carried to any other by a member of the rotation
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group of the polyhedron.

Theorem 2. The d-dimensional simplexps, cross-polytopps and

orthotopes are self-reproducing, d > 2.

Proof. (a) The skeleton of a d-dimensional simplex (including the

tetrahedron) is the complete graph on n = d+1 vertices, with adjacency

matrix A = ee' - I. Its spectrum consists of d (multiplicity 1) and

-1 (multiplicity d). Let Z be an eigenmatrix corresponding to the

eigenvalue -1: AZ = -Z, Z'Z = I. Then ZZ' is the projector of A

corresponding to eigenvalue -1 (see Lancaster and Tismenetsky, 1985,

p. 154): ZZ' = I - (1/n)ee'. From this equation it follows easily

that the rows of Z, wi, i = 1,., n, satisfy the equations

w 'w. = (n-1)/n, and w. 'w = -1/n (i # j).

Thus I1wi - wj11 2  = wi wi  + wj'wj - 2wi'w j  is the same for all pairs ij

(i A j), and the w i  are coordinates of n = d+1 equidistant points in

d-dimensional space: i.e., vertices of a simplex. By Lemma 2, the

d-dimensional simplex is self-reproducing.

(b) The coordinate matrix of the d-dimensional cross-polytope

(generalized octagon) is given by

K d 0-11

Kd = K K
1  

[ (d > 2)

-0 K I  -

Each vertex is adjacent to all other vertices except its antipode.

Thus the skeleton is the complete d-partite graph with two vertices in
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each partite set, and its 2d x 2d adjacency matrix is ( d> 2)

[Ad- E d] A1
Ad, 0

where Ed is a d x 2 matrix of l's. By considering the complementary

graph, it is easy to confirm that the spectrum of Ad consists of

eigenvalues 2d-2 (simple), 0 (multiplicity d) and -2 (multiplicity

d-l).

The last step is to show that AdK d = 0. Using partitioned

matrix multiplication we find that one block of the product AdK d is 0

and the remaining three are: Ad-1Kd_ 1 and E' d-Kd-1, both zero by

induction: and E d K = 0 by direct calculation.

(c) The d-dimensional orthotope Yd (including the cube) is

formed as a prism raised on Y dl as base. Thus, the 2d x d coordinate

matrix is given by

K d _ I  e - 1
Kd = , KI = (d _ 2)

Kd -e-1,

The skeleton Gd of Yd is the graph product Gd = Gd I x G1 , and the

adjacency matrix is

d 11
I Ad. 1 0

Ad• m m [:d -A 1 ] A [ m

VP
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Another way to express Ad is Ad = I x Ad_1 + AI x I, where x denotes

the Kronecker product. From this representation it follows that, if

a is an eigenvalue of Ad then a+I and a-i are eigenvalues of Ad.

(See Lancaster and Tismenetsky, 1985, pp. 406-413.) Hence the

eigenvalues of Ad are

dd

ak = d + 2 - 2k, multiplicity ( ) , k = 1, 2,.... d

By direct computation, one shows that Ad e = de for all d > 2,

and then the eigenmatrix equation AdK d  = (d-2)K d  is easily proved

using induction and partitioned matrix multiplication.
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3. QUESTIONS AND EXPLANATIONS

The facts proven above about Platonic solids and other regular

polytopes immediately raise some questions, to which we can offe- only

partial answers.

Question 1. Why should a polytope of dimension d have an eigenvalue

of multiplicity d? The answer seems to lie with the automorphism

group of the polytope. Using the idea of the polytopes associated

with eigenvalues, Godsil (1978) proved, but did not state, the

following theorem. Babai (1978) proved it using vastly different

methods. See Cvetkovic, Doob and Sachs (1980, Sec. 5.2) for a

complete exposition.

Theorem A. Let G be a connected graph, and suppose that the distinct

eigenvalues of G have multiplicities mi , .... m . Then the

automorphism group of G is isomorphic to a subgroup of

O(mI) x O(m2 ) x... x O(mS)

where O(m) is the group of orthogonal m x m real matrices.

Frucht (1936) identified the automorphism group of the

skeleton for each of the Platonic solids. The results are as

follows.

tetrahedron: S4

cube and octahedron: S x S4 2

dodecahedron and icosahedron: A5 X S2

(Here Sn and An denote the symmetric and alternating groups on n

symbols.) It is well known that S4  and A5  have no irreducible

representation of degree less than 3; thus, Theorem A implies that the
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skeleton of each Platonic solid has an eigenvalue of multiplicity 3 at

least.

Question 2. Why are the rows of an eigenmatrix corresponding to the

second eigenvalue distinct? To set the stage for the partial answe-,

let a = a2 be the next-to-largest eigenvalue of A , with multiplicity

m, so an eigenmatrix has m columns and satisfies AZ = oZ and Z'Z = I.

Let us assume that G is vertex transitive, so that Ae = ke

where k is the valency of each vertex and consequently the largest

eigenvalue. Then each column of Z is orthogonal to e : e'Z = 0. In

other words, the sum of the rows of Z is 0. The vertex transitivity

also implies that the rows of Z all have the same Euclidean length

It is convenient to think in terms of the Laplacian matrix of

G , L = kI - A. The eigenvalues of L (numbered from least to

greatest) are related to those of A by X. = k - a, and the

eigenvectors of L corresponding to Xi are precisely those of A

corresponding to i..

A slight generalization of the Courant-Fischer theory and the

Rayleigh quotient (see Lancaster and Tismenetsky, 1985, Section 8.2)

allows us to identify the eigenvalue

(1) A 2 = (1/im) min { tr(X'LX) : X'X = I , e'X = 01.

It is known that the minimum occurs at an eigenmatrix Z. On the other

hand, the expression being minimized in Eq. (1) can be transformed to

9



facilitate understanding of its meaning. In what follows, e. is row 11
of the identity matrix.

(2) L = kI - A = Z keie' aijeie'
i 3i

But k = Z ai j  for any i, s

(3) L = E Z ai ei(e el)
i j

(4) X'LX = E J aijYi(yi - yj) (eiX yii)'
1 3

(5) tr(X'LX) = Z Z ai3  tr(yi(y - y')) a Z a. iy Y )Y."i 3 3 i 1

i n.

Now use the symmetry of A to conclude that
a.

P.

T 1H. 2(6) tr(X Lx) aij yi  - yj 2 .
i j

To visualize the situation (at least in the case of dimension

m = 3), imagine that each row y'i of X records the position of a unit

mass in m-dimensional Euclidean space. These are to be located on the

surface of a central sphere ( jyil = V/i7 ) in such a way that the

center of mass is at the origin ( EYi = 0 ), but they must not all lie

in a subspace of dimension less than m (rank X = m). Furthermore, if

a.j 0 0 then the masses at yi and y. are joined by a spring. Finally,

the locations are to be chosen so that the energy in the springs (Eq. %

6) is minimized (Eq. 1).

From this formulation, it seems that superimposing some masses

-- i.e., making some rows of X equal -- might be energetically

10
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advantageous: some springs would be brought to zero length. In the

cases at hand, however, other strictures apply that prevent this from

happening. Godsil (1978) and Powers (1981) showed that the set of

vertices of G corresponding to equal rows of an eigenmatrix must form

a set of imprimitivity of the automorphism group. Biggs (1974) showed

that, in an edge- and vertex-transitive graph, any set of

imprimitivity must contain only nonadjacent vertices: no spring may

have zero length.

These incomplete explanations are the best available at the

moment. The authors hope that they will be corrected or extended to

theorems.
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4. OTHER POLYTOPES, OTHER EIGENVALUES

To study other polytopes, we have been conducting compute-

experiments. We have written a program that accepts as input the

adjacency list of a graph, computes an orthogonal eigenmatrix for each

eigenvalue, and draws the given graph using the rows of two

eigencolumns as coordinates of the vertices. When an eigenvalue has

multiplicity 3 and the resulting drawing resembles a projection of a

polytope, we have strong evidence that the polytope is

self-reproducing, although this does not constitute a proof. In all

the cases observed, it is the second eigenvalue that reproduces the

polytope.

Most successes have been achieved with polytopes related to

the Platonic solids in such a way as to preserve a suitably large

group. For example, the truncated tetrahedron, octahedron and cube

all seem to be self-reproducing. By direct computation, as in Theorem

1, we have shown that the cuboctahedron and the icosidodecahedron are

self-reproducing. Since a polyhedron and its dual have the same

group, one would expect the duals of these, the rhombic dodecahedron

and the triacontahedron, to be self-reproducing. The computer results

confirm the expectation for the former, but the latter appears to have

a dodecahedron as the convex polytope associated with its second

eigenvalue. Neither of these has a vertex-transitive graph. Among

the semiregular polyhedra, besides those mentioned above, the snub

cube and the small rhombicuboctahedron appear to be self-reproducing.

The remaining semiregular polyhedra are too large for the presently

used microcomputer. The 24-cell, a regular 4-dimensional polytope,

also appears to be self-reproducing. Its second eigenvalue has

multiplicity 4, and the drawings produced by the computer resemble

12



closely the projections shown in Coxeter (1974), Plate VI, numbers

11-14.

Table 1: More self-reproducing polyhedra

Name number of vertices

cuboctahedron 12

truncated tetrahedron 12
rhombic dodecahedron 14
snub cube 24
small rhombicuboctahedron 24
truncated cube 24 r
truncated octahedron 24
icosidodecahedron 30

Godsil's construction is valid for any eigenvalue, not just

the second. In Table 2 we have summarized the results of applying the

construction to all the eigenvalues of the Platonic solids.

Table 2: Polyhedra of eigenvalues

name vertices eigenvalue multiplicity points convex hull

tetrahedron 4 3 1 1 point

-1 3 4 tetrahedron

octahedron 6 4 1 1 point
0 3 6 octahedron

-2 2 3 triangle ,.

cube 8 3 1 1 point

1 3 8 cube
-1 3 4 tetrahedron

-3 1 2 interval

icosahedron 12 5 1 1 point

/5 3 12 icosahedron
-1 5 6 simplex

-/5 3 12 icosahedron

dodecahedron 20 3 1 1 point

/5 3 20 dodecahedron
1 5 10 Petersen S,

0 4 20 ?

-2 4 10 Petersen
-/5 3 20 dodecahedron

13



Several comments are in order. First, note the number of

points for the various polyhedra. As mentioned in Section 2, each

point corresponds to a block of the automorphism group of the skelton

of the polyhedron. The most commonly occurring blocks are pairs of

antipodal vertices, frequently associated with the third eigenvalop.

It is well known that identifying antipodal points in the graph of a

Platonic solid yields a coloration of the graph (see Cvetkovic, Doob

and Sachs, 1980, p.117). In particular this process applied to thp

dodecahedron graph yields the Petersen graph. Hence the presence of

the two polytopes associated with the eigenvalues of the Petersen

graph. A detailed study of these polytopes has been made. (Powers,

1986.)

Although Godsil's construction yields interesting results, an

alternative is closer to the computer experiments and reveals a new

feature. As before, suppose that G is a graph, Z is an eigenmatrix of

its adjacency matrix corresponding to some eigenvalue, and the rows of

Z are interpreted as points in m-dimensional Euclidean space. Let

line segments join points corresponding to adjacent vertices of the

original graph: if vertices i and j are adjacent in G, then a line

segment joins points e.Z and e.Z. We call the result a framework

corresponding to that eigenvalue.

For instance, the framework corresponding to the second

eigenvalue of a 5-cycle is a pentagon, that of the third eigenvalue is

a star or pentagram. Similarly, the frameworks corresponding to the

last eigenvalues of the dodecahedron and icosahedron mark the edges of

the great stellated dodecahedron and the great icosahedron

respectively. This is not a great surprise, since Coxeter (1973,

p.106) notes the fact that these are isomorphic pairs of polyhedra

14



(under his definition of isomorphism). In all of the other cases of

Table 2, the framework corresponding to an eigenvalue of multiplicity

3 is the skeleton of the convex polytope corresponding to that

ei genval ue.

15,
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5. CONLCUSIONS

We conjecture that the three remaining regular polytopes, the

24-cell, thp 120-cell and the 600-cell in four dimensions, are all

self-reproducing. The skeletons of these polytopes are too large for

the proof techniques used here. We hope to be able to prove that all

sufficiently symmetric convex polytopes are self-reproducing.

The only necessary conditions uncovered -- eigenvalue

multiplicity and distinct rows in the eigenmatrix -- are both linked

to the automorphism group. It is surprising that vertex transitivity

is not necessary, as the case of the rhombic dodecahedron indicates.
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